Search results for " math"
showing 10 items of 11183 documents
Two-dimensional Banach spaces with polynomial numerical index zero
2009
We study two-dimensional Banach spaces with polynomial numerical indices equal to zero.
Common fixed points of g-quasicontractions and related mappings in 0-complete partial metric spaces
2012
Abstract Common fixed point results are obtained in 0-complete partial metric spaces under various contractive conditions, including g-quasicontractions and mappings with a contractive iterate. In this way, several results obtained recently are generalized. Examples are provided when these results can be applied and neither corresponding metric results nor the results with the standard completeness assumption of the underlying partial metric space can. MSC:47H10, 54H25.
Variable time amplitude amplification and quantum algorithms for linear algebra problems
2012
Quantum amplitude amplification is a method of increasing a success probability of an algorithm from a small epsilon>0 to Theta(1) with less repetitions than classically. In this paper, we generalize quantum amplitude amplification to the case when parts of the algorithm that is being amplified stop at different times. We then apply the new variable time amplitude amplification to give two new quantum algorithms for linear algebra problems. Our first algorithm is an improvement of Harrow et al. algorithm for solving systems of linear equations. We improve the running time of the algorithm from O(k^2 log N) to O(k log^3 k log N) where k is the condition number of the system of equations. …
Derivation of a Homogenized Two-Temperature Model from the Heat Equation
2014
This work studies the heat equation in a two-phase material with spherical inclusions. Under some appropriate scaling on the size, volume fraction and heat capacity of the inclusions, we derive a coupled system of partial differential equations governing the evolution of the temperature of each phase at a macroscopic level of description. The coupling terms describing the exchange of heat between the phases are obtained by using homogenization techniques originating from [D. Cioranescu, F. Murat: Coll\`ege de France Seminar vol. 2. (Paris 1979-1980) Res. Notes in Math. vol. 60, pp. 98-138. Pitman, Boston, London, 1982.]
Extensions and corona decompositions of low-dimensional intrinsic Lipschitz graphs in Heisenberg groups
2020
This note concerns low-dimensional intrinsic Lipschitz graphs, in the sense of Franchi, Serapioni, and Serra Cassano, in the Heisenberg group $\mathbb{H}^n$, $n\in \mathbb{N}$. For $1\leq k\leq n$, we show that every intrinsic $L$-Lipschitz graph over a subset of a $k$-dimensional horizontal subgroup $\mathbb{V}$ of $\mathbb{H}^n$ can be extended to an intrinsic $L'$-Lipschitz graph over the entire subgroup $\mathbb{V}$, where $L'$ depends only on $L$, $k$, and $n$. We further prove that $1$-dimensional intrinsic $1$-Lipschitz graphs in $\mathbb{H}^n$, $n\in \mathbb{N}$, admit corona decompositions by intrinsic Lipschitz graphs with smaller Lipschitz constants. This complements results that…
Инфинитезимальная проблема центра на нулевых циклах и гипотеза композиции
2021
Изучается аналог классической инфинитезимальной проблемы центра на плоскости для нулевых циклов. Для этого случая определяется функция смещения и доказывается, что она тождественно равна нулю тогда и только тогда, когда деформация имеет композиционный фактор. Иными словами, гипотеза композиции верна в этом случае, в отличие от тангенциальной проблемы центра для нулевых циклов. Приводятся примеры применения результатов.
Basics of Post-quantum Calculus
2018
A Model for High-Cycle Fatigue in Polycrystals
2018
A grain-scale formulation for high-cycle fatigue inter-granular degradation in polycrystalline aggregates is presented. The aggregate is represented through Voronoi tessellations and the mechanics of individual bulk grains is modelled using a boundary integral formulation. The inter-granular interfaces degrade under the action of cyclic tractions and they are represented using cohesive laws embodying a local irreversible damage parameter that evolves according to high-cycle continuum damage laws. The consistence between cyclic and static damage, which plays an important role in the redistribution of inter-granular tractions upon cyclic degradation, is assessed at each fatigue solution jump,…
Hybrid Equilibrium Finite Element Formulation for Cohesive Crack Propagation
2019
Equilibrium elements have been developed in hybrid formulation with independent equilibrated stress fields on each element. Traction equilibrium condition, at sides between adjacent elements and at sides of free boundary, is enforced by use of independent displacement laws at each side, assumed as Lagrangian parameters. The displacement degrees of freedom belongs to the element side, where an extrinsic interface can be embedded. The embedded interface is defined by the same stress fields of the hybrid equilibrium element and it does not require any additional degrees of freedom. The extrinsic interface is developed in the consistent thermodynamic framework of damage mechanics with internal …
Virtual Element Method: Micro-Mechanics Applications
2019
In this contribution we present an application of the lowest order Virtual Element Method (VEM) to the problem of material computational homogenization. Material homogenization allows retrieving material properties through suitable volume averaging procedures, starting from a detailed representation of the micro-constituents of the considered material. The representation of such microstructure constitutes a remarkable effort in terms of data/mesh preparation, especially when there is not evident microstructural regularity. For such a reason, computational micromechanics may represent a challenging benchmark for showing the potential of VEM. In this contribution, polycrystalline materials ar…